Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38631317

RESUMO

INTRODUCTION: The currently available dosimetry techniques in computed tomography can be inaccurate which overestimate the absorbed dose. Therefore, we aimed to provide an automated and fast methodology to more accurately calculate the SSDE using D_w obtained by using CNN from thorax and abdominal CT study images. METHODS: The SSDE was determined from the 200 records files. For that purpose, patients' size was measured in two ways: a) by developing an algorithm following the AAPM Report No. 204 methodology; and b) using a CNN according to AAPM Report No. 220. RESULTS: The patient's size measured by the in-house software in the region of thorax and abdomen was 27.63 ± 3.23 cm and 28.66 ± 3.37 cm, while CNN was 18.90 ± 2.6 cm and 21.77 ± 2.45 cm. The SSDE in thorax according to 204 and 220 reports were 17.26 ± 2.81 mGy and 23.70 ± 2.96 mGy for women and 17.08 ± 2.09 mGy and 23.47 ± 2.34 mGy for men. In abdomen was 18.54 ± 2.25 mGy and 23.40 ± 1.88 mGy in women and 18.37 ± 2.31 mGy and 23.84 ± 2.36 mGy in men. CONCLUSIONS: Implementing CNN-based automated methodologies can contribute to fast and accurate dose calculations, thereby improving patient-specific radiation safety in clinical practice.

2.
J Pharm Sci ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38369021

RESUMO

Small interfering RNAs (siRNAs) have the ability to induce selective gene silencing, although siRNAs are vulnerable to degradation in vivo. Various active pharmaceutical ingredients (APIs) are currently used as effective therapeutics in the treatment of cancer. However, routes of administration are limited due to their physicochemical and biopharmaceutical properties. This research aimed to develop oral pharmaceutical formulations based on self-nanoemulsifying drug delivery systems (SNEDDS) for optimal transport and co-delivery of siRNAs related to cancer and APIs. Formulations were developed using optimal mixing design (Design-Expert 11 software) for SNEDDS loading with siRNA (water/oil emulsion), API (oil/water emulsion), and siRNA-API (multiphase water/oil/water emulsion). The final formulations were characterized physicochemically and biologically. The nanosystems less than 50 nm in size had a drug loading above 48 %. The highest drug release occurred at intestinal pH, allowing drug protection in physiological fluids. SNEDDS-siRNA-APIs showed a twofold toxicity effect than APIs in solution and higher transfection and internalization of siRNA in cancer cells with respect to free siRNAs. In the duodenum, higher permeability was observed with SNEDDS-API than with the API solution, as determined by ex-vivo fluorescence microscopy. The multifunctional formulation based on SNEDDS was successfully prepared, siRNA, hydrophobic chemotherapeutics (doxorubicin, valrubicin and methotrexate) and photosensitizers (rhodamine b and protoporphyrin IX) agents were loaded, using a chitosan-RNA core, and Labrafil® M 1944 CS, Cremophor® RH40, phosphatidylcholine shell, forming stable hybrid SNEDDS as multiphasic emulsion, suitable as co-delivery system with a potent anticancer activity.

3.
Nucl Med Biol ; 122-123: 108363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37419070

RESUMO

The development of rHDL-radionuclide theragnostic systems requires evaluation of the absorbed doses that would be produced in healthy tissues and organs at risk. Technetium-99m is the most widely used radionuclide for diagnostic imaging, therefore, the design of theragnostic reconstituted high density-lipoprotein (rHDL) nanosystems labeled with Technetium-99m offers multiple possibilities. OBJECTIVE: To determine the biokinetics, radiopharmacokinetics and estimate the absorbed doses induced in healthy organs by Technetium-99m transported in the core and on the surface of rHDL. METHODS: Biokinetic and radiopharmacokinetic models of rHDL/[99mTc]Tc-HYNIC-DA (Technetium-99m in the core) and [99mTc]Tc-HYNIC-rHDL (Technetium-99m on the surface) were calculated from their ex vivo biodistribution in healthy mice. Absorbed doses were estimated by the MIRD formalism using OLINDA/EXM and LMFIT softwares. RESULTS: rHDL/[99mTc]Tc-HYNIC-DA and [99mTc]Tc-HYNIC-rHDL show instantaneous absorption in kidney, lung, heart and pancreas, with slower absorption in spleen. rHDL/[99mTc]Tc-HYNIC-DA is absorbed more slowly in the intestine, while [99mTc]Tc-HYNIC-rHDL is absorbed more slowly in the liver. The main target organ for rHDL/[99mTc]Tc-HYNIC-DA, which is hydrophobic in nature, is the liver, whereas the kidney is for the more hydrophilic [99mTc]Tc-HYNIC-rHDL. Assuming that 925 MBq (25 mCi) of Technetium-99m, carried in the core or on the surface of rHDL, are administered, the maximum tolerated doses for the organs of greatest accumulation are not exceeded. CONCLUSION: Theragnostic systems based on 99mTc-labeled rHDL are safe from the dosimetric point of view. The dose estimates obtained can be used to adjust the 99mTc-activity to be administered in future clinical trials.


Assuntos
Nanopartículas , Tecnécio , Camundongos , Animais , Lipoproteínas HDL , Distribuição Tecidual , Radiometria/métodos
4.
Cardiol Young ; 33(9): 1569-1573, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36062556

RESUMO

MAIN AIM: To electrophysiologically determine the impact of moderate to severe chronic hypoxia (H) resulting from a wide array of CHD (HCHD) conditions on the integrity of brainstem function. MATERIALS AND METHODS: Applying brainstem auditory-evoked response methodology, 30 chronically afflicted HCHD patients, who already had undergone heart surgery, were compared to 28 healthy control children (1-15 yo) matched by age, gender and socioeconomic condition. Blood oxygen saturation was clinically determined and again immediately before brainstem auditory-evoked response testing. RESULTS: Among HCHD children, auditory wave latencies (I, III and V) were significantly longer (medians: I, 2.02 ms; III, 4.12 ms, and; V, 6.30 ms) compared to control (medians: I, 1.67ms; III, 3.72 ms, and; V, 5.65 ms), as well as interpeak intervals (HCHD medians: I-V, 4.25 ms, and; III-V, 2.25ms; control medians: I-V, 3.90 ms and, III-V, 1.80 ms) without significant differences in wave amplitudes between groups. A statistically significant and inverse correlation between average blood oxygen saturation of each group (control, 94%; HCHD, 78%) and their respective wave latencies and interpeak intervals was found. CONCLUSIONS: As determined by brainstem auditory-evoked responses, young HCHD patients manifestly show severely altered neuronal conductivity in the auditory pathway strongly correlated with their hypoxic condition. These observations are strongly supported by different brainstem neurological and image studies showing that alterations, either in microstructure or function, result from the condition of chronic hypoxia in CHD. The non-altered wave amplitudes are indicative of relatively well-preserved neuronal relay nuclei.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Hipóxia , Humanos , Criança , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Tronco Encefálico
5.
Molecules ; 27(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296638

RESUMO

Reconstituted high-density lipoproteins (rHDLs) can transport and specifically release drugs and imaging agents, mediated by the Scavenger Receptor Type B1 (SR-B1) present in a wide variety of tumor cells, providing convenient platforms for developing theranostic systems. Usually, phospholipids or Apo-A1 lipoproteins on the particle surfaces are the motifs used to conjugate molecules for the multifunctional purposes of the rHDL nanoparticles. Cholesterol has been less addressed as a region to bind molecules or functional groups to the rHDL surface. To maximize the efficacy and improve the radiolabeling of rHDL theranostic systems, we synthesized compounds with bifunctional agents covalently linked to cholesterol. This strategy means that the radionuclide was bound to the surface, while the therapeutic agent was encapsulated in the lipophilic core. In this research, HYNIC-S-(CH2)3-S-Cholesterol and DOTA-benzene-p-SC-NH-(CH2)2-NH-Cholesterol derivatives were synthesized to prepare nanoparticles (NPs) of HYNIC-rHDL and DOTA-rHDL, which can subsequently be linked to radionuclides for SPECT/PET imaging or targeted radiotherapy. HYNIC is used to complexing 99mTc and DOTA for labeling molecules with 111, 113mIn, 67, 68Ga, 177Lu, 161Tb, 225Ac, and 64Cu, among others. In vitro studies showed that the NPs of HYNIC-rHDL and DOTA-rHDL maintain specific recognition by SR-B1 and the ability to internalize and release, in the cytosol of cancer cells, the molecules carried in their core. The biodistribution in mice showed a similar behavior between rHDL (without surface modification) and HYNIC-rHDL, while DOTA-rHDL exhibited a different biodistribution pattern due to the significant reduction in the lipophilicity of the modified cholesterol molecule. Both systems demonstrated characteristics for the development of suitable theranostic platforms for personalized cancer treatment.


Assuntos
Nanopartículas , Medicina de Precisão , Animais , Camundongos , Distribuição Tecidual , Benzeno , Lipoproteínas HDL/metabolismo , Nanopartículas/uso terapêutico , Colesterol/metabolismo , Lipoproteínas/metabolismo , Radioisótopos , Fosfolipídeos , Receptores Depuradores/metabolismo
6.
EXCLI J ; 21: 1028-1052, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110562

RESUMO

The term nanocarrier refers to sub-micrometric particles of less than 100 nm, designed to transport, distribute, and release nanotechnology-based drug delivery systems. siRNA therapy is a novel strategy that has great utility for a variety of treatments, however naked siRNA delivery has not been an effective strategy, resulting in the necessary use of nanocarriers for delivery. This review aims to highlight the versatility of carriers based on smart drug delivery systems. The nanocarriers based on nanoparticles as siRNA DDS have provided a set of very attractive advantages related to improved physicochemical properties, such as high surface-to-volume ratio, versatility to package siRNA, provide a dual function to both protect extracellular barriers that lead to elimination and overcome intracellular barriers limiting cytosolic delivery, and possible chemical modifications on the nanoparticle surface to improve stability and targeting. Lipid and polymeric nanocarriers have proven to be stable, biocompatible, and effective in vitro, further exploration of the development of new nanocarriers is needed to obtain safe and biocompatible tools for effective therapy.

7.
ACS Omega ; 7(27): 23591-23604, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847323

RESUMO

Cerenkov radiation (CR) can be used as an internal light source in photodynamic therapy (PDT). Methotrexate (MTX) and paclitaxel (PTX), chemotherapeutic agents with wide clinical use, have characteristics of photosensitizers (PS). This work evaluates the possibility of photoexciting MTX and PTX with CR from 18F-FDG to produce reactive oxygen species (ROS) capable of inducing cytotoxicity. PTX did not produce ROS when excited by CR from 18F-FDG, so it is not useful for PDT. In contrast, MTX produces 1O2 (detected by ABMA) in amounts sufficient to significantly decrease the viability of the T47D cells. MTX solutions of 100 nM combined with 18F-FDG activities of 50 (1.85 MBq) and 100 µCi (3.7 MBq) produced a significant decrease in cell viability to (50.09 ± 4.95) and (47.96 ± 11.19)%, respectively, compared to MTX (66.29 ± 5.92)% and 18F-FDG (91.35 ± 7.00% for 50 µCi and 99.43 ± 11.03% for 100 µCi) alone. Using the CellRox Green reagent, the intracellular production of ROS was confirmed as the main mechanism of cytotoxicity. The results confirm the therapeutic potential of photoactivation with CR and the synergy of the combined treatment with chemotherapy + photodynamic therapy (CMT + PDT). The combination of chemotherapeutic agents with PS properties and ß-emitting radiopharmaceuticals, previously approved for clinical use, will make it possible to shorten the evaluation stages of new CMT + PDT systems.

8.
Microbiol Resour Announc ; 11(8): e0033822, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35894626

RESUMO

We present the draft genome sequence of the halotolerant strain Bacillus paralicheniformis TXO7B-1SG6.

9.
Nanotoxicology ; 16(2): 247-264, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35575193

RESUMO

Although liposomal doxorubicin (LPD) is widely used for cancer treatment, knowledge concerning the toxicity induced by this drug in healthy organs and tissues is limited. LPD-induced toxicity studies relative to free doxorubicin (DOX) have focused on cardiotoxicity in tumor-bearing animals. On the other hand, the results on DOX-induced cardiotoxicity depending on gender are controversial. One of the manifestations of toxicity is tissue inflammation. 67Ga-citrate has been used for decades to assess inflammation in various pathologies. In this work, the ex vivo biodistribution of 67Ga-citrate is used to evaluate induced multi-organ toxicity in healthy 10-week-old male and female CD1 mice treated for 5 weeks with LPD. Toxicity in males, determined by 67Ga-citrate, was evident only in the target organs of liposomes (spleen, liver, kidneys, and lungs); the average weight loss was 11% and mortality was 14%. In female mice, 67Ga-citrate revealed a cytotoxic effect in practically all organs, the average weight loss was 37%, and the mortality after the last dose of LPD was 66%. These results confirm the usefulness of 67Ga-citrate and the importance of stratifying by sex in the toxicological evaluation of drugs.


Assuntos
Antibióticos Antineoplásicos , Cardiotoxicidade , Animais , Antibióticos Antineoplásicos/toxicidade , Cardiotoxicidade/tratamento farmacológico , Ácido Cítrico/toxicidade , Doxorrubicina/análogos & derivados , Doxorrubicina/toxicidade , Feminino , Inflamação , Lipossomos/farmacologia , Masculino , Camundongos , Polietilenoglicóis , Distribuição Tecidual , Redução de Peso
10.
Molecules ; 27(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35408554

RESUMO

Actinium-225 and other alpha-particle-emitting radionuclides have shown high potential for cancer treatment. Reconstituted high-density lipoproteins (rHDL) specifically recognize the scavenger receptor B type I (SR-BI) overexpressed in several types of cancer cells. Furthermore, after rHDL-SR-BI recognition, the rHDL content is injected into the cell cytoplasm. This research aimed to prepare a targeted 225Ac-delivering nanosystem by encapsulating the radionuclide into rHDL nanoparticles. The synthesis of rHDL was performed in two steps using the microfluidic synthesis method for the subsequent encapsulation of 225Ac, previously complexed to a lipophilic molecule (225Ac-DOTA-benzene-p-SCN, CLog P = 3.42). The nanosystem (13 nm particle size) showed a radiochemical purity higher than 99% and stability in human serum. In vitro studies in HEP-G2 and PC-3 cancer cells (SR-BI positive) demonstrated that 225Ac was successfully internalized into the cytoplasm of cells, delivering high radiation doses to cell nuclei (107 Gy to PC-3 and 161 Gy to HEP-G2 nuclei at 24 h), resulting in a significant decrease in cell viability down to 3.22 ± 0.72% for the PC-3 and to 1.79 ± 0.23% for HEP-G2 at 192 h after 225Ac-rHDL treatment. After intratumoral 225Ac-rHDL administration in mice bearing HEP-G2 tumors, the biokinetic profile showed significant retention of radioactivity in the tumor masses (90.16 ± 2.52% of the injected activity), which generated ablative radiation doses (649 Gy/MBq). The results demonstrated adequate properties of rHDL as a stable carrier for selective deposition of 225Ac within cancer cells overexpressing SR-BI. The results obtained in this research justify further preclinical studies, designed to evaluate the therapeutic efficacy of the 225Ac-rHDL system for targeted alpha-particle therapy of tumors that overexpress the SR-BI receptor.


Assuntos
Nanopartículas , Neoplasias , Partículas alfa/uso terapêutico , Animais , Lipoproteínas HDL/química , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Receptores Depuradores
11.
Photodiagnosis Photodyn Ther ; 37: 102630, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34798347

RESUMO

Reconstituted high-density lipoprotein (rHDL) nanoparticles are excellent transporters of molecules and very useful for targeted therapy as they specifically recognize the scavenger receptor, class B1 (SR-B1) that is present on the surface of a wide range of tumor cells. However, they have rarely been employed to transport photosensitizers (PS) for photodynamic therapy (PDT). Rhodamine (R) compounds have been dismissed as useful PSs for PDT due to their low 1O2 production, excitation wavelengths with little tissue penetration, and poor selectivity for tumor cells. It was recently demonstrated that when irradiating at 532 nm or with Cerenkov radiation (CR) from a ß-emitting radionuclide, R123, R6G, and RB undergo electron transfer reactions (type I reaction) with folic acid. R6G also produces type I reactions with O2. In this work, the photodynamic effects of the rHDL-R system were evaluated in vitro. rHDL nanoparticles loaded with R123, R6G, and RB were synthesized, and the PS was internalized into T47D tumor cells. When cells were irradiated with a 532-nm laser in the presence of an rHDL-R systems, a cytotoxic photodynamic effect was obtained in the order R6G > R123 > RB. In the presence of CR from a 177Lu source, cytotoxicity showed the order R6G > RB > R123. The higher cytotoxicity induced by R6G in both cases corresponds to higher cellular internalization and larger production of type I and II reactions. Thus, in this work, it is proposed that rHDL-R/177Lu system can be applied in theragnostics as a multimodal radiotherapy-PDT-imaging system (imaging by SPECT or Cerenkov) and in hypoxic solid tumors in which external radiation is not effective and 177Lu-CR acts as light source.


Assuntos
Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Humanos , Lipoproteínas HDL , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Rodaminas
12.
Toxics ; 9(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34941760

RESUMO

Beside partial coverage in three reviews so far (1994, 2009, 2019), there is no review on genotoxic studies dealing with mercury (Hg) and human exposure using the most usual genotoxic assays: sister chromatid exchanges (SCE), chromosomal aberrations (CA), cytochalasin B blocked micronucleus assay (CBMN), and single-cell gel electrophoresis (SCGE or alkaline comet assay). Fifty years from the first Hg genotoxicity study and with the Minamata Convention in force, the genotoxic potential of Hg and its derivatives is still controversial. Considering these antecedents, we present this first systematic literature overview of genotoxic studies dealing with Hg and human exposure that used the standard genotoxic assays. To date, there is not sufficient evidence for Hg human carcinogen classification, so the new data collections can be of great help. A review was made of the studies available (those published before the end of October 2021 on PubMed or Web of Science in English or Spanish language) in the scientific literature dealing with genotoxic assays and human sample exposure ex vivo, in vivo, and in vitro. Results from a total of 66 articles selected are presented. Organic (o)Hg compounds were more toxic than inorganic and/or elemental ones, without ruling out that all represent a risk. The most studied inorganic (i)Hg compounds in populations exposed accidentally, occupationally, or iatrogenically, and/or in human cells, were Hg chloride and Hg nitrate and of the organic compounds, were methylmercury, thimerosal, methylmercury chloride, phenylmercuric acetate, and methylmercury hydroxide.

13.
J Biomed Nanotechnol ; 17(11): 2125-2141, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34906274

RESUMO

Recently, it was demonstrated that doxorubicin (Dox.HCl), a chemotherapeutic agent, could be photoactivated by Cerenkov radiation (CR). The objective of the present work was to develop a multimodal chemotherapy-radiotherapy-photodynamic therapeutic system based on reconstituted high-density lipoprotein (rHDL) loaded with Dox.HCl and 177Lu-DOTA. 177Lu acts as a therapeutic radionuclide and CR source. The system can be visualized by nuclear imaging. Fluorescence microscopy showed that rHDL-Dox specifically recognized cancer cells (T47D) that are positive for SR-B1 receptors. Encapsulated Dox.HCl was released into the cells and produced reactive oxygen species when irradiated with a 450-nm laser (photodynamic effect). The same effect occurred when Dox.HCl was irradiated by 177Lu CR. Through in vitro experiments, it was confirmed that the addition of 177Lu-DOTA to the rHDL-Dox nanosystem did not affect the specific recognition of SR-B1 receptors expressed in cells, or the cellular internalization of 177Lu-DOTA. The toxicity induced by the rHDL-Dox/177Lu nanosystem in cell lines with high (T47D and PC3), poor (H9C2) and almost-zero (human fibroblasts (FB)) expression of SR-B1 was evaluated in vitro and confirmed the synergy of the combined chemotherapy-radiotherapy-photodynamic therapeutic effect; this induced toxicity was proportional to the expression of the SR-B1 receptor on the surface of the cells used. The HDL-Dox/177Lu nanosystem experienced uptake by tumor cells and the liver-both tissues with high expression of SR-B1 receptors-but not by the heart. 177Lu CR offered the possibility of imparting photodynamic therapy where laser light could not reach.


Assuntos
Antineoplásicos , Portadores de Fármacos , Fotoquimioterapia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Lipoproteínas HDL , Lutécio/farmacologia , Medicina de Precisão , Radioisótopos/farmacologia
14.
Toxicol Mech Methods ; 31(7): 546-558, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34057017

RESUMO

The search for methods that identify early toxicity, induced by chemotherapy, is urgent. Changes in the biodistribution of radiopharmaceuticals could give information on early toxicity. Ten-week-old CD1 male mice were divided into four groups. Two groups were administered a weekly dose of 5 mg/kg of doxorubicin hydrochloride (DOX) for 5 weeks and the control groups were administered saline solution. One week after the end of treatment, the biodistribution of 18F-FDG and 67Ga-citrate were carried out, as was the quantification of plasma enzymes CK, CK-MB, LDH and AST. All enzymes were higher in the treated animals, but only significant (p < 0.05) in the case of CK-MB. 18F-FDG uptake increased in all organs of treated animals except retroperitoneal fat, being significant in spleen, brain, heart, liver, lung, kidney, and inguinal fat. 67Ga-citrate had a more complex pattern. The uptake in the DOX group was higher in spleen, lung, kidney, testes, and gonadal fat, it did not change in brain, heart, and liver, and it was lower in the rest of the organs. It only showed significant differences in lung and pancreas. A thorough discussion of the possible causes that produced the change in biodistributions of both radiopharmaceuticals is included. The pilot study showed that both radiopharmaceuticals could identify early multi-organ toxicity induced by DOX. Although 18F-FDG seems to be better, 67Ga-citrato should not be ruled out a priori. The detection of early toxicity would serve to adopt treatments that prevent its progression, thus improving patient's quality of life.


Assuntos
Distribuição Tecidual , Animais , Ácido Cítrico , Doxorrubicina/toxicidade , Fluordesoxiglucose F18 , Masculino , Camundongos , Projetos Piloto , Qualidade de Vida
15.
Macromol Biosci ; 21(3): e2000362, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33458936

RESUMO

Polymeric nanoparticles encompass micelles and dendrimers. They are used for improving or controlling the action of the loaded therapy or imaging agent, including radionuclides. Some radionuclides possess properties appropriate for simultaneous imaging and therapy of a disease and are therefore called theranostic. The diversity in core materials and surface modification, as well as radiolabeling strategies, offers multiples possibilities for preparing polymeric nanoparticles using radionuclides. The present review describes different strategies in the preparation of such nanoparticles and their applications in nuclear nanomedicine.


Assuntos
Dendrímeros/química , Sistemas de Liberação de Medicamentos , Micelas , Radioisótopos/uso terapêutico , Nanomedicina Teranóstica , Animais , Humanos , Nanopartículas/química
16.
J Photochem Photobiol B ; 210: 111961, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32736225

RESUMO

Doxorubicin (DOX), an effective chemotherapeutic agent, has a wide excitation band centred at 480 nm. Cerenkov radiation (CR) is considered an internal light source in photodynamic therapy (PDT). DOX could be photoactivated by CR and thus, enhancing its cytotoxicity. In this work, 18F-FDG was used to evaluate the effect of Cerenkov radiation on DOX, in comparison to irradiation with a 450-nm laser beam, in terms of ROS production. The production of 1O2 and O2⁎- reactive species during DOX irradiation was detected indirectly by ABMA and DCPIP bleaching, respectively. The cytotoxic effect of the DOX / 18F-FDG CR system was evaluated in the T47D breast cancer cell line. The irradiation of DOX produced 1O2 and O2⁎- species using both 18F-FDG CR and a 450-nm laser beam. The majority reactive species produced in both cases was 1O2; a favourable result, given the greater cytotoxicity of this species. The viability of T47D cells in presence of DOX (5 nM), 18F-FDG (37.5 µCi) and DOX (5 nM)/18F-FDG (37.5 µCi) was (86 ± 9)%, (84 ± 8)% and (64 ± 5)%, respectively; these results suggest a synergistic cytotoxic effect derived from the cytotoxic activity of DOX and its photoactivation by 18F-FDG CR. It is worth noting that the system could be optimized in terms of DOX concentration and 18F-FDG activity for better results. Due to the fact that 18F-FDG is widely used in nuclear imaging, the DOX/18F-FDG system also possesses theragnostic characteristics. Thus, in this work, it is demonstrated that DOX can be used in a dual therapy system based on chemotherapy-PDT when 18F-FDG CR is used as a DOX excitation source.


Assuntos
Doxorrubicina/química , Fluordesoxiglucose F18/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Doxorrubicina/efeitos da radiação , Humanos , Cinética , Lasers , Fotodegradação , Oxigênio Singlete/química , Oxigênio Singlete/metabolismo , Superóxidos/química , Superóxidos/metabolismo
17.
Chem Phys Lipids ; 230: 104934, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32562666

RESUMO

Radiolabeled lipidic nanoparticles, particularly liposomes and lipoproteins, are of great interest as agents for imaging and therapy, due not only to their peculiar physicochemical and biological properties, but also to their great versatility and the ability to manipulate them to obtain the desired properties. This review provides an overview of radionuclide labeling strategies for preparing diagnostic and therapeutic nanoparticles based on liposomes and lipoproteins that have been developed to date, as well as the main quality control methods and in vivo applications.


Assuntos
Marcação por Isótopo/métodos , Lipoproteínas/química , Lipossomos/química , Imagem Molecular , Nanomedicina/métodos , Nanopartículas/química , Animais , Humanos , Lipoproteínas/uso terapêutico , Lipossomos/uso terapêutico
18.
J Biomed Opt ; 24(7): 1-10, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31313539

RESUMO

Cerenkov radiation (CR) is the emission of UV-vis light generated by the de-excitation of the molecules in the medium, after being polarized by an excited particle traveling faster than the speed of light. When ß particles travel through tissue with energies greater than 219 keV, CR occurs. Tissues possess a spectral optical window of 600 to 1100 nm. The CR within this range can be useful for quantitative preclinical studies using optical imaging and for the in-vivo evaluation of Lu177-radiopharmaceuticals (ß-particle emitters). The objective of our research was to determine the experimental emission light spectrum of Lu177-CR and evaluate its transmission properties in tissue as well as the feasibility to applying CR imaging in the preclinical studies of Lu177-radiopharmaceuticals. The theoretical and experimental characterizations of the emission and transmission spectra of Lu177-CR in tissue, in the vis-NIR region (350 to 900 nm), were performed using Monte Carlo simulation and UV-vis spectroscopy. Mice Lu177-CR images were acquired using a charge-coupled detector camera and were quantitatively analyzed. The results demonstrated good agreement between the theoretical and the experimental Lu177-CR emission spectra. Preclinical CR imaging demonstrated that the biokinetics of Lu177-radiopharmaceuticals in the main organs of mice can be acquired.


Assuntos
Lutécio , Imagem Óptica/métodos , Radioisótopos , Compostos Radiofarmacêuticos , Animais , Partículas beta , Linhagem Celular Tumoral , Radiação Eletromagnética , Estudos de Viabilidade , Humanos , Lutécio/química , Lutécio/farmacocinética , Camundongos , Camundongos Nus , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/radioterapia , Radioisótopos/química , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética
19.
Mater Sci Eng C Mater Biol Appl ; 103: 109766, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349410

RESUMO

Radiosynovectomy is a technique used to decrease inflammation of the synovial tissue by intraarticular injection of a ß-emitting radionuclide, such as 177Lu, which is suitable for radiotherapy due to its decay characteristics. Drug-encapsulating nanoparticles based on poly lactic­co­glycolic acid (PLGA) polymer are a suitable option to treat several arthritic diseases, used as anti-inflammatory drugs transporters of such as methotrexate (MTX), which has been widely used in the arthritis treatment (RA), and hyaluronic acid (HA), which specifically binds the CD44 and hyaluronan receptors overexpressed on the inflamed synovial tissue cells. The 1,4,7,10­Tetraazacyclododecane­1,4,7,10­tetraacetic acid (DOTA) was used as complexing agent of Lutetium-177 for radiotherapy porpoises. The aim of this research was to synthesize 177Lu-DOTA-HA-PLGA(MTX) as a novel, smart drug delivery system with target-specific recognition, potentially useful in radiosynovectomy for local treatment of rheumatoid arthritis. The polymeric nanoparticle system was prepared and chemically characterized. The MTX encapsulation and radiolabelling were performed with suitable characteristics for its in vitro evaluation. The HA-PLGA(MTX) nanoparticle mean diameter was 167.6 nm ±â€¯57.4 with a monomodal and narrow distribution. Spectroscopic techniques demonstrated the effective conjugation of HA and chelating agent DOTA to the polymeric nanosystem. The MTX encapsulation was 95.2% and the loading efficiency was 6%. The radiochemical purity was 96 ±â€¯2%, determined by ITLC. Conclusion: 177Lu-DOTA-HA-PLGA(MTX) was prepared as a biocompatible polymeric PLGA nanoparticle conjugated to HA for specific targeting. The therapeutic nanosystem is based on bi-modal mechanisms using MTX as a disease-modifying antirheumatic drug (DMARD) and 177Lu as a radiotherapeutic component. The 177Lu-DOTA-HA-PLGA(MTX) nanoparticles showed properties suitable for radiosynovectomy and further specific targeted anti-rheumatic therapy.


Assuntos
Artrite Reumatoide/terapia , Ácido Hialurônico , Lutécio , Metotrexato , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Compostos Radiofarmacêuticos , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Avaliação Pré-Clínica de Medicamentos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Marcação por Isótopo , Lutécio/química , Lutécio/farmacologia , Metotrexato/química , Metotrexato/farmacologia , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Células RAW 264.7 , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacologia
20.
Nucl Med Commun ; 40(3): 278-286, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30763290

RESUMO

BACKROUND: Human tumors show intrinsic heterogeneity and changes in phenotype during disease progression, which implies different expression levels of cell surface receptors. The research on new heterodimeric lutetium-177 (Lu)-radiopharmaceuticals interacting with two different targets on tumor cells is a strategy for improvement of radiotheranostic performance. This study aimed to synthesize and characterize the Lu-DOTA-PSMA(inhibitor)-Lys-bombesin (Lu-DOTA-iPSMA-Lys-BN) heterodimer and to evaluate its potential to target prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPr) overexpressed in prostate cancer. METHODS: The heterodimeric conjugate was synthesized and characterized by infrarred, mass, and H-NMR spectroscopies. The ligand was labeled with Lu and the radiochemical purity was assessed by radio-high-performance liquid chromatography. PSMA/GRPr affinity and the heterobivalent effect on cell viability were evaluated in LNCaP and PC3 prostate cancer cell lines. The biodistribution profile (3 and 96 h) was assessed in athymic mice with induced prostate tumors. Using pulmonary LNCaP (PSMA-positive) and PC3 (GRPr-negative) micrometastasis models, the influence of heterobivalency and affinity on tumor uptake was quantified (micro-SPECT/CT). RESULTS: Lu-iPSMA-BN (radiochemical purity>98%) showed specific recognition for PSMA and GRPr (IC50=5.62 and 3.49 nmol/l, respectively) with a significant decrease in cell viability (10.15% of cell viability in LNCaP and 40.10% in PC3 at 48 h), as well as high LNCaP and PC3 tumor uptake (5.21 and 3.21% ID/g at 96 h, respectively). Micro-SPECT/CT imaging showed the heterodimer ability to target the tumors (SUVmax of 1.93±0.30 and 1.76±0.10 in LNCaP and PC3, respectively), possibly influenced by the heterobivalent effect. Lu-DOTA-iPSMA-Lys-BN showed suitable affinity for PSMA and GRPr. CONCLUSION: The results warrant further preclinical studies to establish the Lu-radiotracer theranostic efficacy.


Assuntos
Bombesina/química , Glutamato Carboxipeptidase II/antagonistas & inibidores , Compostos Heterocíclicos com 1 Anel/química , Lutécio , Lisina/química , Neoplasias da Próstata/diagnóstico por imagem , Radioisótopos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Antígenos de Superfície , Bombesina/farmacocinética , Bombesina/farmacologia , Bombesina/uso terapêutico , Linhagem Celular Tumoral , Técnicas de Química Sintética , Dimerização , Humanos , Masculino , Camundongos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Radioquímica , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...